

ISOLATION, IDENTIFICATION AND ANTIMICROBIAL ANALYSIS OF PSEUDOMONAS AERUGINOSA FROM DIFFERENT CLINICAL SAMPLES AND TO STUDY THE INTERACTIONS OF TARGET AND RESISTANT PROTEINS WITH CEFEPIME AND IMIPENEM THROUGH DOCKING

Kalsoom Bibi¹, Mahrulkh Khattak¹, Nisar Ahmad², Muhammad Saqib Ishaq³, Amir Muhammad⁴

ABSTRACT

Objective: The present study aims towards gender wise distribution of *P. aeruginosa* and detection of antimicrobial analysis against various isolates from different clinical samples and to better understand the interaction of antibiotics with the resistant proteins and sensitive proteins of this pathogen using Docking.

Study Design: Analytical/Experimental study.

Place and Duration of Study: The research study was carried out at Microbiology laboratory of Shaheed Benazir Bhutto Women University, Peshawar from July to October 2014.

Methodology: A total of 79 different clinical samples comprising of forty-five early morning mid stream urine samples, twenty-eight pus samples, five blood and one stool specimens were processed. MacConkey agar and CLED (Cysteine Lactose Electrolyte Deficient) agar were used as growth media for the culturing of microorganisms. Microorganisms were then identified through Gram staining followed by microscopy. Biochemical tests such as Urease, TSI (triple sugar iron), simmon citrate and Oxidase were carried out. Antibiogram analysis was accomplished using Kirby- Bauer antibiotic disk diffusion method.

Results: The prevalence rate of *P. aeruginosa* in the present study was found to be 5.06% where female patients constituted a larger group with 75% as compared to male (25%). Antibiotic susceptibility test results showed that all of the *P. aeruginosa* isolates were fully resistant (100%) to augmentin, imipenem, and erythromycin. They exhibited moderate resistant to cefotaxime and were fully sensitive (100%) to piperacillin-tazobactam, cefepime, cefobid, amikacin, gentamycin, and norfloxacin, while 75% sensitivity was shown to ciprofloxacin and 50% sensitivity was shown against ceftriaxone, aztreonam and moxifloxacin. GLN547, GLU568, GLU550 and THR565 of penicillin binding protein of *P. aeruginosa* are involved in providing sensitivity to cefepime. Whereas TRP87, ASP119, GLU225 and ASN233 of Metallo β-Lactamase of *P. aeruginosa* are involved in developing resistance to imipenem.

Conclusion: It was concluded that *P. aeruginosa* was present in high percentage in female and it showed resistance towards many first generation drugs. Developing resistance towards third generation drugs was also noticed. Docking showed strong interactions among selected drugs and respective proteins.

Keywords: Antibiotic susceptibility, *Pseudomonas aeruginosa*, Penicillin Binding Protein, Metallo β-Lactamase.

INTRODUCTION

Pseudomonas aeruginosa commonly abbreviated as *P. aeruginosa* is a Gram negative, non spore form-

ing, straight or slightly curved rod-shaped bacterium that occurs as an isolated bacterium or in pairs and incidentally in short chains.¹ The asporogenous, motile, non-fermenting, obligate aerobic, saprophytic, and oxidase positive bacilli is a free living bacterium and an opportunistic pathogen that is widely distributed in nature, predominantly in humid places and inhabit environments including plants, soil, water, sewage and intestinal tract.²⁻³ By nature, this organism is provided with weak pathogenic capacity. However, its capability to endure on inert materials, minimum nutritional demand, tolerance to a wide range of physical conditions and resistance to various antimicrobial agents and anti-septics, contributes a lot to its ecological achievement and its role as an effective and an efficient opportunistic pathogen.⁴ *P. aeruginosa* and *P. pseudomallei* are very critical clinical strains, while *Pseudomonas maltophilia* is occasionally medicinal and clinically important strain

¹ Department of Microbiology, Shaheed Benazir Bhutto Women University Peshawar-Pakistan

² Department of Pathology, Kabir Medical College, Peshawar Pakistan

³ Department of Microbiology, faculty of life Sciences, Abasyn University Peshawar-Pakistan

⁴ Khyber Girls Medical College, Peshawar- Pakistan

Address for Correspondence:

Mahrulkh Khattak

Lecturer Department of Microbiology,
Shaheed Benazir Bhutto Women University, Peshawar
Mobile: 0301-5279507
E-mail: mahrulkhkhattak47@yahoo.com

and other *Pseudomonas* species may rarely cause disease.⁵

P. aeruginosa is a common nosocomial pathogen⁶ that mostly targets debilitated or immunosuppressed hosts admitted in intensive care units, HIV-infected patients, and causes infections with a high mortality rate⁷ in hospitalized patient specifically in respiratory diseases, burn patients, orthopedic related infections, and catheterized patients.⁸ Hence, pseudomonal infections can develop in skin, subcutaneous tissue, eyes, ears, bones, and urinary tract. The infection site may varies with the route of entry and the host's susceptibility.⁹ In addition, it is one of the noteworthy opportunistic bacteria that is isolated from wounds.¹⁰

According to the National Nosocomial Infections Surveillance System, *P. aeruginosa* is ranked as the third most common pathogen that accounts for 10.1% of all nosocomial infections.¹¹ It has been recognized as the second most common cause of ventilator associated pneumonia, the fourth most frequent organism causing urinary tract infections that are catheter-associated, the fifth known cause of surgical infections and the seventh notable cause of bloodstream infections.¹² The most common tools used for detection of *P. aeruginosa* infections are standard microbiological techniques that comprises of phenotypic and biochemical profiles. Although such commercial tests tend to prove unsatisfactory, unreliable and lengthy.¹³

The most frequent pathogens found in the pus samples were *Pseudomonas* and *E. coli* spp.¹⁴ Basu et al.¹⁵ also reported *Pseudomonas* and *E. coli* spp. to be the most commonly occurring Gram Negative Rods (GNR) in wound infection. In addition, *P. aeruginosa* along with *Escherichia coli*, *Proteus mirabilis*, *Klebsiella pneumoniae* and *Streptococcus faecalis* is the most common organism responsible for catheter-associated UTIs.¹⁶

Antibiotic resistance is one of the common problems, affecting human well being. Common factors that accounts for resistance are overuse and misuse of antibiotics, patient associated factors, improper prescriptions by the physicians, common use of broad spectrum antibiotics and self medications.¹⁷ *P. aeruginosa* are most commonly responsible for life-threatening infections that are difficult to cure due to high resistance to many antimicrobial agents.¹⁸ Basic mechanisms that accounts for resistance in *P. aeruginosa* relies on i.e. cell wall's low permeability, chromosomal changes, transmission of resistance genes via plasmids, transposones, and bacteriophages and large size of genomic material with an ability to express a wide-ranging resistance mechanisms.¹⁹

Mostly *P. aeruginosa* are found resistant to penicillins, ampicillin, amoxicillin-clavulanate, narrow and extended spectrum cephalosporins, tetracyclines, rifampin, macrolides and chloramphenicol.²⁰ The most

frequently encountered clinical resistance was through β -lactamase enzymes. Some researchers detected metallo β -lactamase production rate from 5% to 62% in *P. aeruginosa* strains.²¹ Resistance to imipenem is generally associated with changes in the structure or loss of OprD outer membrane protein and rarely due to production of metallo-beta-lactamases. AmpC enzymes of *P. aeruginosa* may also play role in providing decreased susceptibility to imipenem. Gutie'rrez et al,²² reported an association between carbapenem resistance and AmpC overproduction in *P. aeruginosa*.

Cefepime is most frequently reserved for the treatment of severe nosocomial pneumonia and infections caused by *P. aeruginosa*. Cefepime is demonstrated as the most active third generation cephalosporin against *P. aeruginosa* that is consistent with reports from several groups cited by Gad.²³

Molecular docking is a basic tool in structural molecular biology and computer-assisted drug design. The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional structure.²⁴

The present study aimed towards the isolation of *P. aeruginosa* from various clinical samples and to study the antimicrobial activities of different antibiotics against these isolates. The interaction of antibiotics with the resistant and sensitive proteins of this pathogen were checked through bioinformatics tools such as Docking that helped a lot in understanding the binding sites of these drugs with the proteins of the pathogen.

MATERIALS AND METHODS

The research study was carried out at Microbiology laboratory of Shaheed Benazir Bhutto Women University, Peshawar (SBBWU) from July to October 2014. Samples were collected randomly from patients visited routinely different Government hospitals including Khyber Teaching Hospital (KTH), Hayatabad Medical Complex (HMC) and Lady Reading Hospital (LRH) of Peshawar.

Fourty-five early morning mid stream urine samples, twenty-eight pus samples, five blood and one stool specimens were collected. Relevant information including informed consent, name, age, gender, address, antibiotic usage and other relevant laboratory findings were jot down on the request forms and were taken into consideration.

Samples of urine, blood, pus and sputum were collected. Before collection of urine sample, individuals were instructed on how to collect the samples observing all aseptic conditions such as washing the penis and distal urethra with sterile water or with mild alcohol and avoiding the penis and distal urethra from making contact with the container. Urine samples were collected aseptically in sterile plastic bags with screw caps sterile. For collection of sputum specimen, the

patients were provided with a clean, dry, wide necked, leak proof container. Patient coughed deeply to produce sputum. Samples of blood were collected aseptically, transferred to sterile glass bottles and were immediately transported to the laboratory. Pus samples were collected aseptically with sterile cotton swabs. Urine, pus, and sputum were processed directly after transportation while blood sample were initially incubated at 37 °C for 10 days. The samples were brought to the Microbiology laboratory of SBBWU. The samples of clinical isolates were processed for morphological, colonial, biochemical identification. Antimicrobial susceptibility test was also done for identification.

Routine culture media such as MacConkey agar²⁵ and CLED agar were used as growth media for the culturing of microorganisms that were prepared on the bases of manufacturer's instructions and sterilized by autoclaving for 15 minutes at 121 °C. Media's were allowed to cool down to 45 °C, then poured in the Petri plates. MacConkey agar is used as a selective media which promote the growth of gram negative bacteria while inhibit the growth of gram positive bacteria. MacConkey agar favor the growth of both lactose and non-lactose fermenting bacteria. CLED agar is used as a differential media used for the isolation, differentiation and identification of urinary tract organisms. Each sample was then inoculated on two plates containing CLED and MacConkey agar. After streaking, all the plates were incubated at 37 °C for 24 hours. For further identification of microorganism, a battery of tests were performed that included gram's staining (microscopic analysis), colony morphology (macroscopic analysis), and biochemical tests such as oxidase²⁶, TSI agar²⁷, Simmon citrate and Urease tests for the confirmation of the isolates as *P. aeruginosa*.

The susceptibility tests of clinical isolates of *P. aeruginosa* were determined by Kirby-Bauer antibiotic

disk diffusion method by using Muller Hinton Agar. Criteria developed by National Committee for Clinical Laboratory Standards (NCCLS) were used for interpretation of the susceptibility results of bacteria to antimicrobial agents, whether being resistant or sensitive. The commonly used standard commercial disks with their concentrations were as follows: Augmentine (30µgm), Piperacillin-tazobactam (110µg), Cefotaxime (30µg), Ceftriaxone (30µg), Cefobid (75µg), Cefepime (30µg), Aztreonam (30µg), Imipenem (10µg), Amikacin (30µg), Gentamycin (10µg), Erythromycin (15µg), Moxifloxacin (5µg), Norfloxacin (10µg) and Ciprofloxacin (5µg).

BIOINFORMATICS TOOLS

Retrieval of Target Protein and Drug Structure from PDB and Drug bank Criteria used for selection of drug for molecular docking is based on completely resistance towards antibiotic shown by pathogen and the antibiotic towards which the pathogens showed complete sensitivity. Accession number of penicillin binding protein and metallo β-lactamase was searched in UniProt KB (www.uniprot.org) that was entered in RCSB (www.rcsb.org) searching bar. Structure of such sensitive and target proteins were retrieved from RCSB. Structure of the cefepime and imipenem was downloaded from drug bank database (www.drugbank.ca). HexServer software was used for docking. The docking result was interpreted using Discovery studio viewer (DS viewer) software.

RESULTS

Out of the 79 samples processed during study period, only 4(5.06%) isolates were of *P. aeruginosa*, while other 75(94.94%) isolates represented other bacterial genera. Most of the isolates were obtained from pus samples (10.71%) and urine (2.22%). Results are shown in (Table I).

Table I: Percentage Distribution of *Pseudomonas aeruginosa* among Clinical isolates

Samples	No. of samples	Species identified	% identification
Urine	45	1	2.22 %
Pus	28	3	10.71%
Blood	5	0	0%
Sputum	1	0	0%

Table II: Gender wise Distribution of Clinical Isolates of *Pseudomonas aeruginosa*

Sample	No of samples	Female	Male	Female %	Male %
Pus	28	2	1	7.14%	3.6%
Urine	45	1	0	2.22%	0.0%

Table III: Tabular Result of Cultural Characteristics

Species Name	Differential colonial Characteristics on	
	MacConkey agar	EMB Agar
<i>Pseudomonas aeruginosa</i>	Colourless Colonies	Colourless Colonies

Table IV: Result of Biochemical Test

Specie Name	<i>Pseudomonas aeruginosa</i>		Interpretation
Chemical Nature	Non-Lactose Fermenter		Do not ferment the lactose.
Oxidase Test	Positive		Purple colour appears indicating oxidation of phenylenediamine present in the reagent.
Simmon Citrate Agar	Positive		Appearance of blue colour indicates consumption of citrate by bacteria as a source of carbon due to presence of citrate.
Urease Agar Slant	Negative		No appearance of pink colour indicates that the bacteria the organism lack urease enzyme that split urea in the presence of water to release ammonia and carbon dioxide.
TSI Agar	Slope	Alkaline	No appearance of yellow colour on slope indicating that no sugar was consumed by bacteria due to which no formation of acid occurred and medium remains alkaline.
	Butt	Alkaline	No appearance of yellow colour on slope indicating that no sugar was consumed by bacteria, so, no acid formation.
	H2S	No H2S Production	No appearance of black colour indicating no production of H2S.
	Gas	No gas Production	No gas production because no appearance of CO2 & O2 bubbles.

Table V: Antibiotic Susceptibility of Clinical *P. aeruginosa* Isolates

Clinical Specimen					Pus and Urine Samples											
Patient ID Number					Sample1(S1),S2,S3,S4											
					Susceptibility Measurement											
S.No	Antibiotic Agent	Code No.	Disc Potency (µg /disc)	Standard Sensitivity	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4
1.	Moxifloxacin	MXF	(5µg)	17									24	20	20	20
2.	Amikacin	AK	(30µg)	17									30	31	34	28
3.	Augmentin	AMC	(30µg)	18	10		12	10		16						
4.	Aztreonam	ATM	(30µg)	22	14								20		28	25
5.	Cefopera-zone	CFP	(75µg)	21									18	25	27	22
6.	Cefotaxime	CTX	(30µg)	23					20	22		16				25
7.	Ciprofloxacin	CIP	(5µg)	21						20			30		32	28
8.	Erythromycin	E	(15µg)		10	18	13	10								
9.	Gentamycin	CN	(10µg)	15									24	22	25	21
10.	Cefepime	FEP	(30µg)	18									25	30	34	32
11.	Norfloxacin	NOR	(10µg)	17									30	34	28	30
12.	Ceftriaxone	CRO30	(30µg)	21					17		18				22	
13.	Tazocin	TZP110	(110µg)	21									25	30	31	27
14.	Imipenem	IPM10	(10µg)	16	12	10	13	10								

In this study, gender wise distribution of *P. aeruginosa* included 3(75%) samples from females while 1(25%) was from male. On the whole, female population was found more infected than males (Table II and

Figure I).

When grown on EMB Agar, *P. aeruginosa* produced colourless colonies with no lactose fermenta-

Table VI: Interaction of Imipenem with Metallo β -Lactamase

Pathogen	Drug	Protein	Protein Residues	Residue Atom	Drug Atom	Hetatoms	Distance in \AA
Pseudomonas aeruginosa	imipenem		TRP87	NE1	O2		2.540
			TRP87	HE1	O2		2.077
			ASP119	H	H31		1.449
			ASP119	H	C16		2.273
			GLU225	N	H25		5.073
		Metallo β -Lactamase	GLU225	OE2	H26		3.453
			ASN233	HD21	O4		1.456

Table VI: Interaction of Cefepime with Penicillin Binding Protein (PBP)

Pathogen	Drug	Protein	Protein Residues	Residue Atom	Drug Atom	Hetatoms	Distance in \AA
Pseudomonas aeruginosa	Cefepime	PBP	GLN547	HE22	S		2.416
			GLU568	CG	H		2.091
			GLU568	OE2	H		0.817
			GLU568	OE2	C		1.481
			GLU550	OE2	H		0.841
			GLU550	OE2	N		1.336
			THR565	OG1	O		2.730
			THR565	HG1	O		2.441
			THR565	CB	H		5.097
			THR565	CB	C		6.062
			GLU568	OE1	C		1.194
			GLU550	OE2	C		0.976
			GLU550	OE2	C		1.714
			GLU550	CD	N		1.533
			GLU550	OE1	C		1.648
			GLU550	OE1	N		1.618

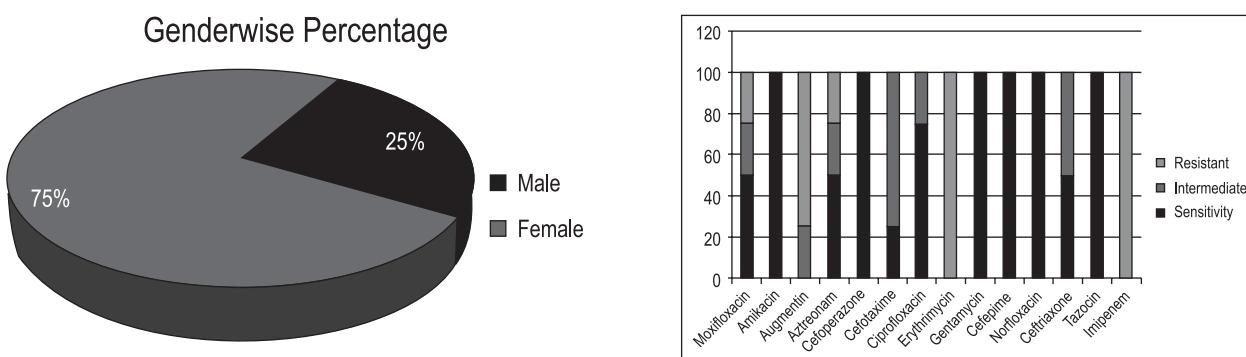


Figure I: The sex wise distribution of the isolated *P. aeruginosa* specimens among the study population(n=4).

Figure II: Graphical Presentation of Antibiotic Susceptibility of Clinical *P. aeruginosa* Isolates

tion. When grown on Mac Conkey agar *P. aeruginosa* produced small, round, flat, irregular slightly raised colonies with no lactose fermentation (Table III). When *P. aeruginosa* was subjected to Gram reaction, under microscope, it showed rod shape, gram negative bacilli. The selected isolates were further characterized by different biochemical tests. The results of the different biochemical tests performed for the four isolates are given in Table IV.

After characterization the samples for *P. aeruginosa* were subjected to antibiotic susceptibility test for antibiogram analysis. Table V and Figure II shows the susceptibility measurement while the graph shows percentage sensitivity and resistivity.

Docking was carried out to determine and understand the interaction between selected drugs and proteins.

Table VI and VII given below show interaction of imipenem with Metallo β -Lactamase (Resistance Providing Protein) and cefepime with penicillin binding protein (PBP) (Target Protein for the drug).

DISCUSSION

The present research work was conducted to isolate and identify *P. aeruginosa* from various clinical samples such as urine, pus, blood and stool. In addition, the prevalence of *P. aeruginosa* isolates in clinical specimens was also examined over the study period. The prevalence rate of *P. aeruginosa* in the present study was found to be 5.06%, this level is relatively high when compared with Nkang²⁸ studies that have prevalence level of 2.1%.

In present study, the sex-wise distribution rate of *P. aeruginosa* was compared with other studies. In present study, female patients constituted a larger group with 75% as compared to male (25%). Chander²⁹ also found high frequency of *P. aeruginosa* in females (55.17%) than males (44.83%). This result support existing study with slight difference.

Susceptibility measurement measures the capability of different antibiotics to retard or inhibit microorganism growth. Increasing resistance to various anti-pseudomonal drugs particularly among clinical strains has been reported worldwide.²⁹ The antimicrobial susceptibility profiles of *P. aeruginosa* to fourteen antimicrobial agents were tested. In this study, all the *P. aeruginosa* isolates were found to be 100% sensitive to piperacillin-tazobactam, cefoperazone and cefepime. Results in Gad's paper demonstrated cefepime as the most active cephalosporin against *P. aeruginosa* that is consistent with reports from several groups cited by Gad.²³ 50% sensitivity with 25% resistance was observed against aztreonam and 50% strains of *P. aeruginosa* were found sensitive with 50% intermediate sensitivity to Ceftriaxone. Toroglu²¹ reported that third generation Ceftriaxone showed 66% susceptibility to

clinical isolates. Variation in the resistance may be caused by factors such as exposure to antibiotics, population under observation, and form of clinical sample examined. 75% intermediate susceptibility was observed against cefotaxime that showed similarity with Haleem³⁰ work.

100% resistance was analyzed in hospital strains of *P. aeruginosa* against three most commonly prescribed antibiotics i.e. augmentin, imipenem and erythrocine. Bacterial resistance to beta-lactam antibiotics is mainly due to the production of beta-lactamases. Resistivity pattern showed 100% resistance of amoxicillin/clavulanate in the study conducted by Amadi³¹

The resistance pattern of *P. aeruginosa* to erythromycin was in consistent with report of Javiya³² that showed 98.1% and 100% resistance to erythromycin. In the study conducted by Rodriguez-Martinez³³ 87.5% of the selected isolates were resistant to imipenem that agreed with our result with slight difference. Resistance to imipenem is generally associated with changes in the structure or loss of OprD outer membrane protein and rarely due to production of metallo-beta-lactamases. AmpC enzymes of *P. aeruginosa* may also play role in providing decreased susceptibility to imipenem. Gutierrez²² reported an association between carbapenem resistance and AmpC overproduction in *P. aeruginosa*.

Aminoglycosides especially gentamicin are well-known frontline antibiotics in the treatment of infections caused by gram negative bacteria. Antimicrobial susceptibility of *P. aeruginosa* to gentamicin reported in this study was 100% that is comparable to what was reported by Nkang²⁸ who reported the similar sensitivities of gram negative isolates to gentamicin. In the present study, 100% susceptibility was observed toward amikacin that was almost similar with values reported in other studies, with sensitivity of 81.4% in Chander²⁹ report.

The fluoroquinolones are a family of broad spectrum antibacterial agents that are very effective against gram negative organisms, including *P. aeruginosa*. In recent study, 75% of isolates were found sensitive to ciprofloxacin that agreed the result of conducted Chander²⁹ 73.3 %. *P. aeruginosa* strains in this study exhibited a high rate of sensitivity to the norfloxacin (100%), moxifloxacin 50% and slightly lesser rate of sensitivity to norfloxacin than the existing strain reported by Gad²³ 62% and 62.5% in study reported by Haleem.³⁰

Through docking, it was concluded GLN547, GLU568, GLU550 and THR565 amino acids of penicillin binding protein of *P. aeruginosa* were involved in providing sensitivity to cefepime. Whereas, TRP87, ASP119, GLU225 and ASN233 of Metallo β -Lactamase of *P. aeruginosa* were involved in developing resistance to imipenem as these are responsible in developing interactions with this drug, thus depriving it to bind with the target protein. Mostly strong interactions were observed that lies within range of 4°A.

CONCLUSION

It was concluded that *P. aeruginosa* was present in high percentage in female as compared to males. In addition, *P. aeruginosa* showed resistance towards many first generation drugs such as augmentin, erythromycin. Developing resistance towards third generation drugs such as imipenem was also noticed. Docking showed strong interactions among selected drugs (cefepime, imipenem) and respective proteins (penicillin binding protein, metallo β -lactamase) and if resistance develops against the cefepime, it may depict that the targeted amino acids have undergone evolution.

REFERENCES

1. Kirecci E, Kareem R D. Antibiotic susceptibility patterns of *Pseudomonas aeruginosa* strains isolated from various clinical specimens. 2014

2. Dubois V, Arpin C, Melon M et al. Nosocomial outbreak due to a multi-resistance strain of *Pseudomonas aeruginosa* P12: efficacy of cefepime-amikacin therapy and analysis of β -lactam resistance Journal of Clinical Microbiology 2001; 39: 2072–2078.

3. Lang AB, Horn MP, Imboden MA, Zuercher AW. Prophylaxis and therapy of *Pseudomonas aeruginosa* infection in cystic fibrosis and immunocompromised patients. Vaccine 2004; 22: 44-48.

4. Gales AC, Jones RN, Turnidge J, Rennie R, Ramphal R. Characterisation of *Pseudomonas aeruginosa* isolates: occurrence rate, antimicrobial susceptibility pattern and molecular typing in the Global SENTRY antimicrobial surveillance program 1997–1999. Clinical Infectious Disease 2001; 32: 146–155.

5. Chevalier J, Bredin J, Mahamoud A, Malléa M, Barbe J, Pagès JM. Inhibitors of antibiotic efflux in resistant *Enterobacter aerogenes* and *Klebsiella pneumoniae* strains. Antimicrobial agents and chemotherapy 2004; 48(3): 1043-1046.

6. Jones RN, Stilwell MG, Rhomberg PR, Sader HS. Antipseudomonal activity of piperacillin/tazobactam: more than a decade of experience from the SENTRY Antimicrobial Surveillance Program (1997–2007). Diagnostic microbiology and infectious disease 2009; 65(3): 331-334.

7. Lambert ML, Suetens C, Savey A, Palomar M, Hiesmayr M, Morales I, Wolkewitz M. Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study. The Lancet infectious diseases 2011; 11(1): 30-38.

8. Rajat R M, Ninama GL, Mistry K, Parmar R, Patel K, Vegad MM. Antibiotic resistance pattern in *Pseudomonas aeruginosa* species isolated at a tertiary care hospital, Ahmedabad. National J Med Res, 2012; 2(2): 156-59.

9. Hoge R, Pelzer A, Rosenau F, Wilhelm S. Weapons of a pathogen: proteases and their role in virulence of *Pseudomonas aeruginosa*. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2010; 2: 383-395.

10. Lau G W, Hassett DJ, Britigan BE. Modulation of lung epithelial functions by *Pseudomonas aeruginosa*. Trends in microbiology, 2005; 13(8): 389-397.

11. Moreau-Marquis S, Stanton BA, O'Toole GA. *Pseudomonas aeruginosa* biofilm formation in the cystic fibrosis airway. Pulmonary pharmacology & therapeutics, 2008; 21(4): 595-599.

12. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK. Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infection control and hospital epidemiology 2008; 29(11): 996-1011.

13. Procop GW. Molecular diagnostics for the detection and characterization of microbial pathogens. Clinical Infectious Diseases, 2007; 45(2): 99-111.

14. Kumar AR. Antimicrobial Sensitivity Pattern of *Staphylococcus aureus* isolated from Pus From tertiary Care Hospital, Surendranagar, Gujarat and Issues Related to the Rational Selection of Antimicrobials. Scholars Journal of Applied Medical Sciences 2013; 1(5): 600-605.

15. Basu S, Ramchuran PT, Bali ST, Gulati AK, Shukla VK. A prospective, descriptive study to identify the microbiological profile of chronic wounds in outpatients. Ostomy wound management, 2009; 55(1): 14-20.

16. Fluit AC, Schmitz FJ, Verhoef J. Frequency of isolation of pathogens from bloodstream, nosocomial pneumonia, skin and soft tissue, and urinary tract infections occurring in European patients. European Journal of Clinical Microbiology and Infectious Diseases, 2001; 20(3): 188-191.

17. Khan F, Khan A, Kazmi SU. Prevalence and susceptibility pattern of multi drug resistant clinical isolates of *Pseudomonas aeruginosa* in Karachi. Pakistan journal of medical sciences, 2014; 30(5): 951.

18. Poole K. *Pseudomonas aeruginosa*: resistance to the max. Frontiers in microbiology 2011; 2.

19. Abdallah AI, Elahwel AM. Antibiotic resistance in *Pseudomonas aeruginosa* isolated from various clinical specimens in Ibn Sina hospital-Sirte-Libya. Bull. Alex. Fac. Med, 2009; 45(3).

20. Pollack M. *Pseudomonas aeruginosa*. In: Principles and practice of infectious diseases (eds. G. L. Mandell, J. E. Bennett and R. Dolin) 2000; 5th ed. pp. 2310-2335.

21. Toroglu S, Avan H, Keskin D. Beta-lactamases production and antimicrobial resistance ratio of *Pseudomonas aeruginosa* from hospitalized patients in Kahramanmaraş, Turkey. 2013.

22. Gutie 'rez O, Juan C, Cercenado E, Navarro F,

Bouza E, Coll P, Perez JL, Oliver A. Molecular epidemiology and mechanisms of carbapenem resistance in *Pseudomonas aeruginosa* isolates from Spanish hospitals. *Antimicrob. Agents Chemother.* 2007; 51:4329–4335.

23. Gad GF, El-Domany RA, Zaki S, Ashour HM. Characterization of *Pseudomonas aeruginosa* isolated from clinical and environmental samples in Minia, Egypt: prevalence, antibiogram and resistance mechanisms. *Journal of antimicrobial chemotherapy* 2007; 60(5):1010-1017.

24. Morris GM, Lim-Wilby M. (2008). Molecular docking. In Molecular Modeling of Proteins, Humana Press, 2008; pp. 365-382.

25. Ishaq MS, Hussain MM, Afridi MS, Ali G, Khattak M, Ahmad S, Shakirullah. In Vitro Phytochemical, Antibacterial and Antifungal activities of leaf, stem and root extracts of *Adiantum capillus veneris*. *The Scientific World Journal*, volume 2014; Article ID 269793, 7 pages (<http://dx.doi.org/10.1155/2014/269793>).

26. Khattak M, Ishaq MS, Gul M, Hussain MM, Ali G, Mohammad A, Javid K, Pervez A. Isolation and identification of *Pseudomonas Aeruginosa* from Ear samples and its Antibiogram analysis. *Khyber Journal of Medical Sciences* 2013; 6(2): 234-236.

27. Ishaq MS, Afsheen Z, Muhammad A, Hussain MM, Ali G, Ishaq M. Comparative study of bacterial pathogens causing urinary tract infections in diabetic and non-diabetic patients. *Khyber Journal of Medical Sciences* 2013; 6(1): 64-68.

28. Nkang AO, Okonko IO, Mejeha OK, Adewale OG, Udeze AO, Fowotade A, Babalola ET. Assessment of antibiotics susceptibility profiles of some selected clinical isolates from laboratories in Nigeria. *J Microbiol Antimicrob* 2009; 1: 19-26.

29. Chander A, Raza MS. Antimicrobial susceptibility patterns of *Pseudomonas aeruginosa* clinical isolates at a tertiary care hospital in Kathmandu, Nepal. *Asian Journal of Pharmaceutical and Clinical Research* 2013; 6(3).

30. Haleem H, Kadhim J, Ilham T, Banyan A. Isolation of *Pseudomonas aeruginosa* from Clinical Cases and Environmental Samples, and Analysis of its Antibiotic Resistant Spectrum at Hilla Teaching Hospital. *Med. J. Babylon* 2011; 8(4):34-41.

31. Amadi ES, Uzoaru PN, Orji I, Nwaziri AA. Antibiotic resistance in clinical isolates of *P.aeruginosa* in Enugu and Abakalikiri, Nigeria. *The Internet Journal of Infectious Diseases* 2009; 7(1).

32. Javiya VA, Ghatak S, Patel KR, Patel JA. Antibiotic susceptibility patterns of *Pseudomonas aeruginosa* at a tertiary care hospital in Gujarat, India. *Indian journal of pharmacology* 2008; 40(5): 230.

33. Rodriguez-Martinez JM, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in *Pseudomonas aeruginosa*. *Antimicrobial agents and chemotherapy* 2009; 53(5): 1766-1771.

ONLINE SUBMISSION OF MANUSCRIPT

It is mandatory to submit the manuscripts at the following website of KJMS. It is quick, convenient, cheap, requirement of HEC and Paperless.

Website: www.kjms.com.pk

The intending writers are expected to first register themselves on the website and follow the instructions on the website. Author agreement can be easily downloaded from our website. A duly signed author agreement must accompany initial submission of the manuscript.